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The flow in a completely filled cylinder driven by a rotating endwall has multiple
time-dependent stable states when the endwall rotation exceeds a critical value. These
states have been observed experimentally and computed numerically elsewhere. In this
article, the linear stability of the basic state, which is a non-trivial axisymmetric flow,
is analysed at parameter values where the unsteady solutions exist. We show that the
basic state undergoes a succession of Hopf bifurcations and the corresponding eigen-
values and eigenvectors of these excited modes describe most of the characteristics of
the observed time-dependent states.

1. Introduction

The flow in a cylinder with a rotating endwall has continued to attract much
attention since Vogel (1968) first observed the vortex breakdown of the central
core vortex that forms. Recent experiments (Stevens, Lopez & Cantwell 1999) have
observed a multiplicity of unsteady states that coexist over a range of the governing
parameters. To date, it is not understood well where these oscillatory states originate
from, how they are interrelated, nor how they are related to the steady, axisymmetric
basic state.

The flow in a completely filled cylinder of radius R and height H is driven by
the constant rotation of one endwall at angular speed Q2. A schematic of the flow
configuration is shown in figure 1. The flow is governed by just two non-dimensional
parameters, the aspect ratio 4 = H/R, and the Reynolds number Re = QR?/v, where
v is the kinematic viscosity of the incompressible fluid. Since there are just two
parameters, only codimension-one or -two bifurcations can be observed. The system
has one type of symmetry, invariance to rotations about the cylinder axis, generating
the symmetry group SO(2). For low Re, there is a unique branch of solutions that
is steady and retains all the symmetries of the system. The only local codimension-
one bifurcations that this branch can undergo are saddle-node or Hopf ones. The
saddle-node of the basic state has not been observed in this system. With the Hopf
bifurcation, the SO(2) can either be preserved or not; both situations have been
observed as Re is increased in different ranges of 4. When SO(2) is preserved, the
oscillatory state that results remains axisymmetric, and if SO(2) is broken the result
is a rotating wave (Knobloch 1994) where the axisymmetric component of the flow
remains steady and a particular azimuthal mode becomes finite and precesses.

Experiments (Escudier 1984; Stevens et al. 1999) have shown that for aspect ratios
A ~ 2.5, the basic state loses stability to an axisymmetric time-periodic state, and



110 J. M. Lopez, F. Marques and J. Sanchez

Q

FIGURE 1. Schematic of the flow configuration.

that this bifurcation appears to be a supercritical Hopf one. Gelfgat, Bar-Yoseph
& Solan (1996) have performed a linear stability analysis of the basic state and
concluded that for 4 = 2.5, a supercritical Hopf bifurcation at Re ~ 2706 takes place.
That analysis only considered axisymmetric perturbations; however Gelfgat, Bar-
Yoseph & Solan (2001) have subsequently performed a linear stability analysis for
general three-dimensional perturbations and have concluded that for 1.63 < 4 < 2.76
the basic state loses stability via an axisymmetric Hopf bifurcation. Furthermore,
Blackburn & Lopez (2000) have computed the full three-dimensional Navier—Stokes
equations for 4 = 2.5 and have found that at Re = 3000 the flow is axisymmetric
and time-periodic with a period that agrees with both experiments and axisymmetric
computations (Lopez 1990; Lopez & Perry 1992; Stevens et al. 1999). At A4 = 2.0,
Sorensen & Christensen (1995) have also experimentally observed that the flow, even
after a Hopf bifurcation at Re ~ 2600, remains axisymmetric up to about Re = 3000.
So, the experiments, linear stability analysis and computations cited so far provide a
consistent picture of the first bifurcation of the basic state for 4 ~ 2.5.

A recent series of experiments (Spohn, Mory & Hopfinger 1998) provide a different
picture of how the basic state loses stability. They observe steady non-axisymmetric
flows at Re lower than those at which linear stability analysis (Gelfgat et al. 1996,
2001) predicts any bifurcation. Since the breaking of the SO(2) symmetry always
results in a rotating wave (Knobloch 1994) (of course, a stationary azimuthal wave
may result at a distinguished curve in the two-dimensional parameter space, but not
over a finite range of parameters as is reported in the experiments) one must conclude
that either the observed stationary three-dimensional flows are a consequence of a
fixed imperfection in the apparatus that destroys the SO(2) symmetry, or that they
arise via a non-local bifurcation that has not been detected in any other study.

Although the first bifurcation of the basic state, leading to an axisymmetric limit-
cycle solution for A4 ~ 2.5 is reasonably well understood, we still do not know much
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about the other unsteady states that have been observed at higher Re. These were first
described by Lopez & Perry (1992), where the axisymmetric Navier—Stokes equations
were solved numerically. A similar multiplicity of unsteady states computed from the
axisymmetric Navier—Stokes equations over a similar range of Re for A4 = 2.0 have
been reported by Sorensen & Christensen (1995). Lopez & Perry (1992) described
in detail two time-periodic states with 4 = 2.5, one for Re < 3500 and another for
Re > 3500. The state with Re < 3500 corresponds to the branch that bifurcates
from the basic state at Re ~ 2700 and a characteristic of the unsteadiness is a
pulsation of the vortex breakdown bubbles with frequency w;. The other state with
Re > 3500 has a qualitatively different characteristic, consisting of waves travelling
on the central vortex, predominantly in the direction from the stationary endwall
to the rotating endwall, with frequency w;. These states were subsequently observed
experimentally (Stevens et al. 1999) along with a further quasi-periodic state that
exists over a range 3200 < Re < 3700. This state was also computed from the
axisymmetric Navier—Stokes equations and has a primary frequency w, and a low-
frequency modulation, wy, two orders of magnitude smaller. The frequencies, w;, w;,
and w3, non-dimensionalized with the viscous time R?/v, scale approximately as Re
over the range where they have been observed. In terms of the corresponding periods,
Stevens et al. (1999) observed 2nRe/w; =~ 36.5, 2nRe/w, ~ 57.7, and 2nRe/w; ~ 28.8.

The flow visualizations (Stevens et al. 1999) for Re < 3200 appear to be essentially
axisymmetric, whereas for Re > 3200, particularly for the states with frequencies w,
and s, the flows were clearly non-axisymmetric. Nevertheless, the experimentally
measured periods of oscillation and their estimates from axisymmetric computations
agreed uniformly to within ~ 1%. The experiments measured these oscillation periods
from digitized video frames that were cross-correlated with a reference frame. Each
frame consisted of an instantaneous image of the dye that was released on the axis of
the stationary endwall. This dye streak was advected towards the head of the vortex
breakdown bubble and subsequently spread out, so that the head of the bubble was
an accumulation site for the dye. The cross-correlations, working on intensity from
the laser-illuminated dye, essentially gave for each frame the displacement relative
to the reference frame of the head of the bubble, which oscillated up and down the
cylinder axis. So, the experiments only measured the axisymmetric component of any
flow oscillations; in particular, they did not measure the precession frequency of the
non-axisymmetric states.

The three time-dependent states have also been computed recently using the full
three-dimensional Navier—Stokes equations (Blackburn & Lopez 2000). They pre-
sented solutions, with 4 = 2.5, on the three branches where Re = 3000 (w; branch),
Re = 3500 (w, branch), and Re = 4000 (w; branch). The Re = 3000 case evolved to an
axisymmetric state, whereas the other two supported rotating waves (modulated by the
underlying oscillations of the axisymmetric components of the flows) with azimuthal
wavenumbers m = 5 and m = 6, respectively. One particularly salient conclusion from
that study was that the axisymmetric components of the non-axisymmetric states
retain almost all (> 99%) of the kinetic energy of the flows and that the rotating
waves are slaved to the axisymmetric components of the flows.

The paper is organized as follows. In §2, the axisymmetric problem is formulated
in terms of the streamfunction and the axial component of angular momentum,
casting the governing equations in terms of the biharmonic of the streamfunction.
The numerical techniques for the solution of the nonlinear evolution, the computation
of the basic state, and its linear stability analysis are presented in §3, along with a
comprehensive account of the convergence properties. The results of the linear stability
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FIGURE 2(a, b). For caption see facing page.

analysis for 4 = 2.5 are given in §4, and §5 compares the linear eigenmodes with
the difference between the nonlinear solutions and the basic state. These results give
new insight into the origin and nature of the experimentally observed time-dependent
states, which are compared with the linear modes in § 6, and conclusions are drawn
in section §7.

2. Formulation

In order to gain an understanding of the origin of the experimentally observed
multiple unsteady states (Stevens et al. 1999), we wish to begin with a linear stability
analysis of the steady axisymmetric basic state, determine under what conditions it
undergoes Hopf bifurcations and examine if the bifurcated states are in any way
related to the observed nonlinear states.

To initiate such a study, the basic state must be accurately computed. In this
problem, the basic state is non-trivial, it is a function of r and z, and an analytic
description is only available in the inertialess limit Re — 0, which is of no interest here
since the unsteady states occur for Re ~ 0(10°). Hence, a numerical determination
of the basic state is required, and this will result from the solution to the time-
independent Navier—Stokes equations restricted to an axisymmetric subspace.

For planar two-dimensional and axisymmetric problems, a convenient formulation
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FIGURE 2. Contours of the y,- and ,-eigenmodes corresponding to the most dangerous
eigenvalue, Ay, at Re = 2700, A = 2.5, over one period for n, as indicated.

is in terms of the streamfunction and vorticity since it is implicitly divergence-free.
A drawback of this formulation is that the boundary conditions are in terms of the
streamfunction and there is no explicit boundary condition for the vorticity. When this
formulation is used for nonlinear evolution, this problem with the boundary conditions
is overcome by using an explicit temporal scheme, but for time-independent solutions
and linear stability analysis this is not appropriate. In these cases, one would like an
implicit solution of the Laplace operators, and this requires explicit implementation
of the boundary conditions.

One way to resolve the boundary condition problem is to treat the vorticity only
as an auxiliary variable and formulate the problem in terms of the streamfunction,
leading to a biharmonic formulation. Our problem is a little more involved due to the
rotation of the bottom endwall which introduces an additional variable, the azimuthal
component of velocity, v, which we shall incorporate in terms of the (axial) angular
momentum, y = rv. In cylindrical polar coordinates, the velocity and vorticity vectors
are

u=(=y.,7,p)/r and Vxu=(—y,rn,7)/r
where v is the streamfunction and #, the azimuthal component of vorticity, is
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FIGURE 3. Variations of (a) o; and (b) w; of the most dangerous eigenvalue with n,, for Re = 2700
and A = 2.5. The solid lines are fits of the form a + b/r? for n, > 110.
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FiGure 4. Eigenvalues on branch 1, 4, = g; + iw, evaluated with n, = 70 (dashed curve and

circles) and n, = 140 (solid curve and squares) over a range of Re € [2500,4000] with 4 = 2.5. The
asymptotic estimate at Re = 2700 is the plus symbol.

related to y via
A*w =Yz + Prr — wr/r = —-rn.
Note that contours of p in an (r,z)-plane depict the streamlines of the flow,
and likewise contours of y depict the vortex lines. The governing equations, non-
dimensionalized using R as the length scale and R?/v as the time scale, are the
azimuthal components of the Navier—Stokes equations and their curl:
} (2.1)

0y = Ay + (1/r)pzyy — (1/r)wry,

OAep = Aly + (1/1)p:0,(Aeyp) — (1/1)p, Autp: — (2/r7)p. Ay — 8.(3°/1?).
The governing equations can be written in a more compact form using x = (y,):
10 ) L:<A* 0)’

(2.2)

0Bx =Lx+N(x,x)=f(x), B= ( 0 A. 0 A?
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FIGURE 5. Variation of Reg; with n,, obtained using the fit (4.1) which is valid in the
asymptotic regime (n, = 90).

and N is the quadratic nonlinearity. The corresponding boundary conditions are
v =y, =7y = 0 on the axis (r = 0), the cylinder wall (» = 1), and the top endwall
(z=A); p =y, =0,y =Rer? on the bottom rotating endwall (z = 0).

To solve for the basic state, x, = (7, ¥), the left-hand side of (2.2) is set to zero.
The linear stability of the basic state is determined by linearizing (2.2) about the basic
state, with

x(r,z,1) = x5(r,z) + "' x,(r, 2),
where the perturbation x, satisfies homogeneous boundary conditions. The linearized
equations for x, lead to the generalized eigenvalue problem
/Bx, = Lx, + N(x,x,) + N(x,,x;) = Df(xp)x), (2.3)

where Df(x;) is the Jacobian of the right-hand side of (2.2) evaluated at x,.

3. Numerical techniques

Edwards et al. (1994) and Tuckerman & Barkley (2000) advocate the use of a
single suite of routines for the nonlinear evolution, the steady-state solver, and linear
stability analysis. This is the type of approach that we also employ. We shall begin
with a description of the nonlinear evolution solver as it provides the basic building
blocks for the complete package.

3.1. Nonlinear evolution solver

The time derivatives in (2.2) are approximated by a second-order backwards time-
difference, the linear term is treated implicitly, and a second-order backwards extrap-
olation scheme is used for the nonlinear term, leading to

3 2 1
P B L) = LB — Bk LN ) N2 2
<25t )x 5;B* 25 B (X" (x5, x"77),

where Jt is the time step and x* = x(ty + kdt).
Discretization in space is accomplished using second-order centred differences.
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FIGURE 6. Real and imaginary parts of the three most dangerous eigenvalues for 4 = 2.5 and
2500 < Re < 4000, using n, = 140.
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FiGURE 7. Contours of vy, yp, vy, and wy, for Re = 2700, A4 = 2.5, nr = 140.

The most critical aspect is the efficient solution of the linear operator acting on
x*. L consists of two operators, A. and A2, For the single Laplacian A., we simply
diagonalize in the z-direction and obtain a system of one-dimensional solutions in r.
For the biharmonic,

Ai = arrrr - (2/r)arl'r + (3/72)6}7 - (3/r3)ar + (26}’1‘ - (2/7')61')622 + azzzza

the 0., and 0,,.. operators cannot be diagonalized simultaneously. The 0.,,, operator
is almost the square of d,,, but it is not exactly so due to the need to use one-sided
differences in 0,.., at the boundaries. However, the banded structure from the finite
difference discretization still allows for an efficient direct solver.

3.2. Steady-state solver
The time-independent governing equations for the basic state, x;, are

f(x)=Lx+N(x,x) =0, (3.1)
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FIGURE 8. Contours of the y,-eigenmodes corresponding to eigenvalues 4, and 43 at Re = 2700,
A = 2.5, over one period.

where L and N are discretized as in § 3.1. This equation is solved by Newton iteration
Df(x;)(xy" —xj) = —f(x}), (3.2)
where Df(x}) acting on a vector y is

Df(x})y =Ly + N(x},p) + N(p,x}).

For an efficient solution of (3.1), two things are required: a good initial guess x) and
an efficient linear solver for (3.2). By using continuation from Re = 0, we always have
a good estimate of x) for subsequently larger Re. Due to the size of the Jacobian,
direct methods are impractical, and so we use a matrix-free iterative algorithm based
on Krylov subspaces, known as generalized minimal residuals, GMRES (Trefethen
& Bau 1997). To accelerate the convergence of GMRES it must be appropriately
preconditioned; we use L as the preconditioner.

3.3. Linear stability

The linear stability of the basic state, x;, is determined by the eigenvalue from (2.3)
with largest real part (growth rate). If its real part is positive (negative), the basic state
is unstable (stable). To solve the eigenvalue problem (2.3) we use the Arnoldi method
as implemented in the ARPACK package (Lehoucq, Sorensen & Yang 1998). This
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FIGURE 9(a, b). For caption see facing page.

iterative technique is based on the power method, where the eigenvalues of a subspace
generated by the powers of an initial vector are found. The method converges to the
eigenvalues with largest moduli. Since we are interested in the eigenvalues with
largest real part, rather than largest moduli, we implement a Cayley transformation
converting (2.3) to

(Df(xy) — pB)~'(Df(x}) — 4B)x, = 7.x,. (3.3)
The eigenvalues of (3.3) are related to those of (2.3) by
A—ua
=B
where o and f are real in our implementation. On using the Arnoldi method (3.3)
converges to eigenvalues of largest moduli, and with suitably chosen o and f these

correspond to the eigenvalues of (2.3) with largest real part, through (3.4). The
eigenvectors of (3.3) and (2.3) are the same.

= (3.4)

3.4. General considerations

The most critical aspect in all three types of solvers listed above involves the solution
of large linear systems of the form

(A+cB)y =a, (3.5)
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FIGURE 9. Contours of y and y over one period for Re = 3000 and 4000, A = 2.5, n, = 140.

where a is known. The three types of solvers differ in the specification of 4 and c:

Nonlinear evolution A =1L, ¢ = —3/20t,
Steady-state solver A =Df(x}), ¢=0,
Linear stability A=Df(xp), c=—p.

For the nonlinear evolution, (3.5) is solved directly. For the steady-state solver and
linear stability analysis, (3.5) is solved via GMRES with L as the preconditioner,
which comes directly from the nonlinear evolution solver.

3.5. Convergence with spatial resolution

The most sensitive physical feature of the flow to be resolved is the Ekman boundary
layer on the rotating endwall, whose thickness scales with Re™'/2. The convergence
of the eigenvalue problem is by far the most sensitive computation to grid resolution.
Throughout, we use a uniform grid with n,/n, = A, where n, and n, are the number
of grid intervals in the radial and axial directions. We now compare the y,- and
p,-eigenmodes corresponding to the most dangerous eigenvalue, i.e. that with largest
real part, for Re = 2700 and 4 = 2.5, computed with n. = 70 and n, = 140. In fact,
this eigenvalue is one of a pair of complex conjugates, and so the eigenvector has a
harmonic temporal dependence. For the eigenvalue pair o; 4 iw;, the corresponding
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eigenvectors are yg + iy;. The corresponding mode has the form
Re (e (yp +1iy;)) = e”'(yg cos @t — y; sin wyt).

Figure 2 shows six equally spaced phases of yrcoswt — y;sinw;t over one period
11 = 2n/w,. For n, = 70, w; = 444.4, and for n, = 140, w; = 459.6. Note that the
complex eigenvectors are determined up to an arbitrary phase. In the figure, we have
adjusted the phase up to n/30 in order to synchronize the oscillations between the
n, = 70 and n, = 140 cases. From this figure, we see that there is very little difference
in either the temporal or spatial structure of this most dangerous mode, and so with
n, = 70 all salient features of the flow are accurately captured. To obtain a more
quantitative measure of the convergence with increasing n,, we examine how ¢; and
w; vary with n,.

In figure 3, ¢; and w; for Re = 2700 and A = 2.5 are plotted for n, € [40, 140] in
steps of 10. We see from this figure that for n, > 90, the system is well within the
asymptotic regime where the computed ¢; and w; converge as n 2. This quadratic
convergence is to be expected from our second-order scheme. The fits shown in the
figure are

Ja(n,) = —0.18454 + 465.167i — (18230 + 108912i)/n?.

This allows us to estimate the asymptotic values lim,, ., 4; = —0.18454 4 465.167i.
Compared with the value at n, = 140, —1.1159 + 459.617i, we have a relative error of
1.2%. Furthermore, this error is not simply randomly oriented in the complex plane.
Figure 4 shows the variation of this eigenvalue with Re for n, = 70 and n, = 140,
together with the asymptotic estimate at Re = 2700. Although there are variations
due to n, in the location of the eigenvalues in the complex plane, they are located on
a well-defined curve. In essence, computations of eigenvalues using a relatively low
n, correspond to a precise computation at an effectively lower Re. This phenomenon
can be traced back, in part, to the degree to which the Ekman layer can be resolved
with finite n,, and to artifical viscosity introduced by the numerics on the coarse grid
throughout the domain.

In the nonlinear evolution of the axisymmetric Navier—Stokes equations, with
A = 2.0, Sorensen & Christensen (1995) observed with their uniformly spaced finite
difference grid that except for a displacement of the Reynolds numbers, the general
behaviour of the transition scenario did not depend critically on the grid resolution.
They concluded that n, ~ 100 is sufficient to capture qualitatively correct dynamics.
In all the results presented in our study, n, = 140 has been used.

4. Results of the linear stability analysis

We begin by determining the critical Re at which the basic state first loses stability.
We shall restrict our investigation to the A4 = 2.5 case since this is the aspect ratio
used in the experiments of Stevens et al. (1999).

4.1. Onset of unsteadiness

The basic state, x,, is computed using n, = 140, and the sixteen eigenvalues with
largest real part are found over a range of Re. Using this spatial resolution, x,
loses stability as a pair of complex conjugate eigenvalues cross the imaginary axis
at Re ~ 2742. We can estimate the critical Re for this Hopf bifurcation in the limit
n, — oo using the results of §3.5. For Re = 2700, ¢; = —0.18454 — 18230/n? and for
Re = 2710, ¢; = 0.077777 — 18163 /n?. Using linear interpolation, the critical Re as a
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FiGure 10. Contours of y, and y, for Re = 3000 and 4000, 4 = 2.5, n, = 140.

function of n, is
2722

1 4 n2/254.6°
giving the asymptotic estimate Re.; = 2707. The relative error in Re.; using n, = 140
is 1.4%. Figure 5 is a plot of the expression (4.1), together with the asymptotic value
(dashed line). This asymptotic value agrees quite well with the estimate of Gelfgat
et al. (1996) from their linear stability analysis (Re; =~ 2706), and the experimental
estimates of Regj =~ 2700 to within about 1% (Escudier 1984; Stevens et al. 1999).
The Hopf frequency, m;, also compares very well with the experiments and the linear
stability analysis of Gelfgat et al. (1996); we obtain w; ~ 460 and the other studies
obtain 0.17Re ~ 460 (we have used R?/v to scale time whereas they used ©, hence
the Re factor).

Regit = 2707 + (4.1)

4.2. Subsequent Hopf bifurcations of the basic state

There are three nonlinear unsteady branches that are observed experimentally. In this
section, we examine in some detail the three most dangerous eigenvalues of the basic
state. These are plotted in figure 6, where they have been computed over the range
2500 < Re < 4000 in increments of 100, depicting three distinct branches, labelled
1, 2, and 3 according to the order in which they cross the imaginary axis as Re is
increased. As we shall see, these three modes of the basic state capture the essential
features of the nonlinear states. Even though the second and third modes are unstable
limit cycles when they bifurcate from the unstable basic state, they play an important
role as organizing centres for the observed nonlinear dynamics.

Before exploring the spatial structure of the perturbation modes x,, it is useful
to re-examine the spatial structure of the basic state. Figures 7(a) and 7(b) show
yp and vy, for Re = 2700, A4 = 2.5. For this flow driven by the rotating endwall,
the azimuthal velocity is the primary flow component, represented here by y, whose
contours give the vortex lines. All the vortex lines emanate from the rotating endwall
and terminate at the corner where the rotating endwall and the stationary sidewall
meet. This basic feature of the flow, present for all Re, necessitates the bending of
the vortex lines, producing meridional flow, vy, via the 0.(y*/r?) term in (2.1). For
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FIGURE 11(a, b). For caption see facing page.

a description of the physical mechanism involving vortex line bending responsible
for the recirculation zones in y, on the axis, see Brown & Lopez (1990). As Re is
increased, the secondary meridional flow is intensified, further bending the vortex
lines and producing an Ekman layer on the rotating disk whose thickness scales with
Re™ 2. Due to the presence of the sidewall, the Ekman layer is turned into the axial
direction and a swirling jet-like structure results near the sidewall. The locus of the
jet’s maximum 7y, at each axial station makes an angle of approximately 6° with the
sidewall. As we shall see, the linear perturbation modes from the stability analysis of
the basic state are primarily related to this jet.

Figures 7(c) and 7(d) show contours of the azimuthal and axial velocities of the
basic state, v, and wy,. The contours of v, are similar to the vortex lines, but the
position of the maximum (the jet core) is tilted to the interior with respect to the
maximum in angular momentum (the angle for the v,-jet is approximately 9°). The
yp-jet core is located very close to the zero-axial-velocity curve (w;), separating flow
moving up the sidewall from the return flow to the rotating disk in the interior. Even
though there are shear instability modes associated with the axial velocity profile, the
azimuthal velocity is an order of magnitude larger and the most dangerous modes
of the basic state correspond to instabilities of the azimuthal velocity profile. In
particular, (negative) gradients in y, are greatest on the sidewall side of the jet. These
gradients are centrifugally unstable and contribute to the most dangerous modes
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FiGURE 11. Contours of (a) 7y —y, and (¢) v — ), over one nonlinear period 1.217 x 1072 and (a) 7,-
and (c) y,-eigenmodes of Z; over one period 71 = 2n/w; = 1.213 x 1072 for Re = 3000, 4 = 2.5,
n. = 140.

of the basic state. Figures 2(b) and 8 show the y,-eigenmodes corresponding to the
three most dangerous eigenvalues. The most prominent characteristic of these modes
is a series of cellular structures located between the jet core and the sidewall that
travel up the sidewall and turn in towards the interior at the stationary endwall.
Different modes differ in the number of such structures. The drift axial velocity of
these structures is closely related to the axial velocity of the basic state in this region.
These cellular structures are reminiscent of Gortler vortices with a mean drift in
the crossflow (axial) direction (Saric 1994). At Re = 2700, these perturbations are
damped and do not affect the basic state in the long-time limit. When Re > Re,
these perturbations result in an unsteady nonlinear flow.

5. Comparison between linear modes and nonlinear periodic solutions

Of the three experimentally observed unsteady branches of solutions, only two have
time-periodic axisymmetric components. We begin by examining the periodic solutions
on branch 1 at Re = 3000 and on branch 3 at Re = 4000. Figure 9 shows contours
of y and y over one period of each of these nonlinear solutions. The most striking
features of these contours are the unsteadiness of the vortex breakdown recirculation
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FIGURE 12(a, b). For caption see facing page.

zone on the axis and the flickering at the tip of the angular momentum jet. On branch
1 the unsteadiness consists of a pulsation of the recirculation zone whereas on branch
3 the recirculation zone forms and travels down the axis periodically. These two
nonlinear solution branches have been described in detail in Lopez & Perry (1992).

Figure 10 shows the corresponding steady basic states (yp, ). The nonlinear
perturbation fields, (y — y5, 9 — yp), for Re = 3000 are shown in figures 11(a) and
11(c). These differences are compared with the (y,,,)-eigenmode corresponding to
the most dangerous eigenvalue at Re = 3000, 4, (the only eigenvalue with positive real
part), shown in figures 11(b) and 11(d). The linear eigenmode captures all the spatial
structure of the nonlinear perturbation. This is not unreasonable since the Hopf
bifurcation of 4; at Re;; = 2707 is supercritical, relatively close to the supercritical
Re considered, and there are no other eigenvalues with positive real part (excited
modes).

At Re = 4000 the basic state has three excited modes, 4;, 4,, and A3, and A; has
by far the largest real part, i.c. fastest growth rate (see figure 6). Its imaginary part,
w3, gives the period 2n/w3; = 7.175 x 1072 that is very close to the period of the
nonlinear solution (7.20 x 1073). Furthermore, the corresponding eigenmode, shown
in figures 12(b) and 12(d), also captures all the spatial structure of the nonlinear
perturbation shown in figures 12(a) and 12(c). The minor differences between the
eigenmode and the nonlinear perturbation can be accounted for by the fact that the
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FiGURE 12. Contours of (a) y — 7, and (¢) v — yj, over one nonlinear period 7.20 x 10~* and (a) 7,-
and (c) y,-eigenmodes of 43 over one period 13 = 2n/w; = 7.175 x 107 for Re = 4000, A = 2.5,
n. = 140.

linear mode has a harmonic temporal dependence whereas the nonlinear solution has
significant harmonics; these are reported in Lopez & Perry (1992) and Stevens et al.
(1999) where power spectral densities (PSD) of solutions on this branch show peaks
at the fundamental and several harmonics. The A3 mode bifurcates from the basic
state at Re ~ 3150 and the resulting limit cycle is unstable. The agreement between
the nonlinear solution and the linear mode so far from the bifurcation point and in
the presence of other excited modes is impressive. Furthermore, the nonlinear solution
at Re = 4000 is not even axisymmetric; it supports a rotating wave with azimuthal
wavenumber m = 6, modulated by the periodic axisymmetric mode (Blackburn &
Lopez 2000). The agreement between the linear modes and the nonlinear solutions
on branches 1 and 3 is a manifestation of the important role that the unstable
axisymmetric solutions bifurcating from the basic state play as organizing centres for
the nonlinear dynamics.

6. Comparison of linear modes with experimentally observed states

The two periodic branches that are observed experimentally, branches 1 and 3,
are fully accounted for by the appropriate excited linear mode of the basic state.
That the two branches are only observed over particular ranges of Re can also be
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FIGURE 13. Real parts, g, of the three most dangerous eigenvalues for 4 = 2.5, versus Re.
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FIGURE 14. Comparison between the experimentally observed primary periods (open squares) and
the periods corresponding to the three most dangerous eigenvalues (solid lines), for 4 = 2.5 over a
range of Re.

explained in terms of the growth rates of the linear modes. Figure 13 shows the
growth rates of the three most dangerous eigenvalues. Notice that for Re < 3300,
A1 = o1 £ iw; has the largest growth rate, and that the nonlinear periodic solutions
with frequency w; have been experimentally observed for 2700 < Re < 3400. For
Re > 3300, 1; has the dominant growth rate and periodic solutions with w; have
been observed for Re > 3600. The growth rate of 1, never dominates over the Re
range considered, but all three growth rates are comparable for 3200 < Re < 3400.
The quasi-periodic solutions are observed over the range 3200 < Re < 3650. This
suggests the possibility that the quasi-periodic solutions are a result of a nonlinear
interaction between some of the excited modes, whereas, for the periodic solutions
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FIGURE 15. Ratios of the imaginary parts of the three most dangerous eigenvalues, w,/w; and
w3 /w1, versus Re, together with the low-order resonances 2/3 and 5/4.

we have been able to associate them directly with the single most excited mode over
their range of existence in Re.

Figure 14 shows the periods associated with each of the three most dangerous
modes, scaled as 2nRe/w (solid lines), together with the observed periods on branches
1 and 3 and the primary period of the quasi-periodic solutions on branch 2 (open
symbols). The agreement for the periodic branches is to well within the experimental
uncertainty. For the quasi-periodic solutions, the difference between the observed
period and 2nRe/w is about 10%.

The frequencies associated with the second and third modes, w, and w;, are close to
low-order resonances with the frequency of the first mode. Figure 15 shows how the
ratios w,/w; and w;/w; vary with Re, and that w,/w; is close to a 2/3 and w3/w; to a
5/4 resonance over an extensive range of Re that includes the second and third Hopf
bifurcations of the basic state. The PSD of the experimentally obtained quasi-periodic
branch shows a dominant peak at ws. There is another peak with comparable power at
approximately w;/2, and also a low-frequency peak, wy. These peaks can be explained
by considering that w,/w; = (wy/w1)/(w3/w1) = (2/3)/(5/4) = 8/15 = 1/2 + 1/30.
The low frequency observed experimentally and numerically (Stevens et al. 1999) is
very close to w;/30 and therefore the wyr &~ w;/30 peak may result from an interaction
between the w, and w; modes. In fact, w, — w3/2 = w3/30 ~ wy;. Remember that 13
and A, are the eigenvalues with the largest positive growth rates for Re > 3400, so
this further suggests that the mixed (quasi-periodic) state could be a combination of
the two most excited modes.

7. Conclusions

The observed multiplicity of stable time-dependent states in the flow in a cylinder
driven by a rotating endwall has been analysed in terms of the linear modes of the
corresponding axisymmetric basic state. This basic state is non-trivial in the sense
that it depends on both the radial and axial directions in a finite container. We have
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developed a suite of numerical techniques, exploiting the biharmonic formulation of
the problem, that allows us to compute the nonlinear time evolution, the basic state,
and its linear stability in a consistent and efficient manner.

Over an extensive range of Re all the eigenmodes associated with eigenvalues that
have positive real part are found. These excited modes of the basic state are all
oscillatory. Over a similar range of Re, the multiple unsteady nonlinear states co-exist
and are stable. By matching their frequencies to particular excited linear modes, we
have been able to account for almost all of the spatial and temporal characteristics
of the nonlinear states in terms of the bifurcated modes from the basic state.

The several most dangerous modes are associated with the centrifugal instability of
the primary flow between the azimuthal jet and the sidewall. These instability modes
are reminiscent of Gortler vortices, subjected to a drift up the wall caused by the
induced secondary meridional flow associated with the basic state. The oscillations of
the recirculation zones on the axis, which are of either a pulsation or travelling wave
type for distinct nonlinear states, are seen to be slaved responses driven by the linear
instability modes.

A full understanding, in terms of bifurcation theory, of the connection between
the stable nonlinear time-dependent states and the excited modes of the basic state,
particularly the modes that emerge as unstable limit cycles, requires the development
of continuation techniques for unstable limit cycles and their Floquet analysis.
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